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Abstract
We introduce a class of stochastic integer sequences. In these sequences,
every element is a sum of two previous elements, at least one of which is
chosen randomly. The interplay between randomness and memory underlying
these sequences leads to a wide variety of behaviours ranging from stretched
exponential to log-normal to algebraic growth. Interestingly, the set of all
possible sequence values has an intricate structure.

PACS numbers: 02.50.−r, 05.40−a

Integer sequences underly many problems in combinatorics, computer science and physics,
with new beautiful sequences continuing to emerge [1]. Sequences are typically deterministic.
Meanwhile, stochastic sequences are just as ubiquitous, occurring in random processes such
as the random walk. Stochastic sequences usually arise in very different contexts, and hence
are rarely compared with their deterministic counterparts. In this letter, we demonstrate how
rich such a comparison can be.

Consider the Fibonacci numbers, Fn = Fn−1 + Fn−2, that describe, for example, the
number of leaves in plants and the number of ancestors of a drone [2–4]. As every element
depends on the previous two, a natural stochastic generalization is xn = xn−1 ± xn−2, where
addition and subtraction are chosen with equal probabilities [5–8] (similar sequences also
describe one-dimensional disordered systems [9, 10]). The resulting sequences are intriguing.
While the sequences still grow exponentially, the ratio xn/xn−1 approaches a stationary
distribution that possesses singularities at all rational values [7, 8].

Inspired by this richness, we consider an alternative form of stochasticity, namely, one that
does not require subtraction and therefore more similar in spirit to the original deterministic
sequence. Relaxing the rule that every element depends only on the preceding two elements,
we arrive at the following additive stochastic rules:

xn =
{

xn−1 + xq (model I)

xp + xq (model II).
(1)

In model I, we take the preceding element xn−1 and another one whose index q is randomly
chosen between 0 and n − 1. In model II, both indices p and q are chosen randomly,
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Figure 1. The moments 〈xk
n〉1/k versus n for model I. The moments were obtained from an average

over 108 realizations. The inset compares the growth of an individual realization xn with the
average An.

0 � p, q � n − 1. Without loss of generality, the first element is set to unity, x0 = 1.
Consequently x1 = 2, while the next elements are stochastic. The number of possible
sequences increases as n! and n!2 for models I and II, respectively. Rule I leads to
monotonically increasing sequences; sequences generated by rule II increase only on average.

The most basic characteristic, the average of the nth element, An = 〈xn〉, can be
determined analytically. For model I, it satisfies the linear recursion relation

An = An−1 +
1

n

n−1∑
j=0

Aj . (2)

Comparing this with the recursion for An+1, we eliminate the summation and obtain
a Fibonacci-like recursion relation with n-dependent coefficients An+1 − 2An + An−1 =
(n + 1)−1An−1. We are primarily interested in the large-n behaviour, and hence, we treat
A and n as continuous variables. The above difference equation reduces to the differential
equation A′′ = (A − A′)/n (here ′ ≡ d/dn). Using the WKB method [11], we obtain the
n-dependence

An � an−1/4 exp(2
√

n). (3)

The amplitude a ≈ 0.1711 is determined numerically. We see that the long-range memory
leads to considerably slower stretched exponential growth compared with the exponentially
growing Fibonacci numbers.

Does the average characterize the growth of an actual sequence? If yes, this would imply
that the normalized moments

〈
xk

n

〉/〈xn〉k approach finite values asymptotically. Figure 1 shows
otherwise, the higher order moments grow according to〈

xk
n

〉 ∝ exp(βk

√
n) (4)

with βk > kβ1 (for the lowest moments, we find βk = 2, 4.3 and 6.5). This so-called
‘multiscaling’ indicates that a typical sequence may greatly depart from the average. Therefore,
the average (3) is insufficient to describe a typical sequence. These results are similar in spirit
to the behaviour of the random Fibonacci sequences where the typical growth is x ∝ exp(γ n),
with nontrivial Lyapunov exponent γ , while

〈
xk

n

〉 ∝ exp(γkn) with γk 	= kγ1.
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Figure 2. The scaling distribution underlying Pn(ln xn). Shown is the scaling function �(z) versus
the scaling variable z = (ln xn − bn)/�n. The distributions were calculated from 107 realizations.
A Gaussian is also shown for reference.

Interestingly, an individual realization grows slower than the average (see the inset to
figure 1)

xn ∝ exp(β
√

n) (5)

with the Lyapunov exponent β ≈ 1.889. This coefficient was determined by studying the
variable ln xn. As shown in figure 2, this variable is Gaussian distributed:

Pn(ln xn) ∝ exp

[
− (ln xn − bn)

2

2�2
n

]
. (6)

The average and the variance of ln xn grow with n according to bn � βn1/2 and �2
n � σ 2n1/2 ∝

bn, respectively. Eventually, the random variable y = ln xn/n1/2 becomes deterministic,
y → β as n → ∞. Similar behaviour, including the Gaussian fluctuations and the relation
between the variance and the average, is also found in one-dimensional localization problems
[12, 13].

One can calculate the probability distribution Pn(x) for extremal values of xn. The
minimal value n + 1 is obtained by choosing q = 0 at every step k = 1, . . . , n.
Similarly, the maximal value 2n is obtained by choosing q = k − 1 at every step. Hence,
Pn(n + 1) = Pn(2n) = 1/n!. Further extremal cases can be evaluated manually, for example,
Pn(n + 2) = Pn

(
3 · 2n−2

) = n−1
n! . However, these extremal probabilities do not elucidate the

typical behaviour (5).
It is interesting to study the set of all possible sequence values. Let �n be the support of

the probability distribution Pn(x). For small n, we have �0 = {1}, �1 = {2}, and furthermore,

�2 = {3, 4}
�3 = {4, 5, 6, ∗, 8}
�4 = {5, . . . , 10, ∗, 12, ∗, ∗, ∗, 16}
�5 = {6, . . . , 18, ∗, 20, ∗, ∗, ∗, 24, ∗, . . . , ∗, 32}.

(7)

Determination of the sets �n requires enumeration of all n! histories, and we computed them
up to n = 15. The simplest feature is the set size �n, listed in table 1. The set �n always begins
with a subsequence of Bn consecutive integers. For n � 3, the sets �n have gaps, i.e. strings
of missing elements denoted by ∗ in equation (7). The number of gaps Gn is listed in table 1.
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Table 1. The sequences �n, Bn and Gn.

n �n Bn Gn

3 4 3 1
4 8 6 2
5 16 13 3
6 30 22 6
7 55 39 10
8 98 62 18
9 175 117 28

10 310 180 50
11 555 367 79
12 986 594 144
13 1757 1073 249
14 3138 1888 432
15 5618 3567 756

The three sequences �n, Bn and Gn, all grow exponentially with n. For example, �n ∝ λn

with λ ≈ 1.78. We conclude that the sets �n contain a number of nontrivial deterministic
integer sequences including �n, Bn and Gn.

Remarkably, the sets �n have an intricate structure. For instance, for n = 8 the sequence
of the gap lengths contains G8 = 18 elements as follows:

{1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 7, 7, 1, 3, 7, 15, 31, 63}. (8)

Generally, going in reverse direction (from 2n to n + Bn) one observes a family of consecutive
gaps of lengths 2n−2 − 1, 2n−3 − 1, . . . , 1 separated by single elements. Then, there is a three-
element sequence, followed by a second family of twin gaps, 2n−5 − 1, 2n−5 − 1, . . . , 1, 1. All
these gaps are separated by single elements. Next, there is a 5-sequence, followed by a family
of triplet gaps, again separated by single elements (this family has not yet formed for n = 8,
equation (8)). There is also a fourth family of quadruplet gaps with an intertwined pattern.
The complexity of this gap-sequence structure increases rapidly, and eventually, gaps of even
length appear.

Naively, one may probe the probability distribution via a mean-field description that
ignores the sequence history altogether. In this approximation, one obtains a recursive equation
for the probability distribution

Pn(x) = 1

n

n−1∑
l=0

x−1∑
y=1

Pn−1(y)Pl(x − y). (9)

Consequently, there are closed recursion relations for the moments. While consistent with
the exact equation (2), the emerging recursion relations for the higher moments are only
approximate. Analysis of these equations results in ordinary scaling behaviour,

〈
xk

n

〉 ∝ 〈xn〉k ,
contrary to equation (4). Therefore, strong correlations develop, correlations that affect the
statistical characteristics.

We now turn to model II. Here, the average An satisfies a recursion relation similar to
equation (2),

An = 2

n

n−1∑
j=0

Aj . (10)



Letter to the Editor L561

0 200 400 600 800 1000
n

0

500

1000

1500

2000

<
x nk >

1/
k

k=1
k=2
k=3

Figure 3. The moments 〈xk
n〉1/k versus n for model II. The data represent an average over 108

realizations.

Simplifying this equation to An = (1 + n−1)An−1 and using the initial condition A0 = 1, we
obtain

An = n + 1. (11)

Numerical simulations confirm this linear growth. Figure 3 shows that the normalized moments
remain finite asymptotically as〈

xk
n

〉 � µkn
k. (12)

In contrast with model I, the average properly characterizes higher order moments. Therefore,
the probability distribution Pn(x) admits the scaling form

Pn(x) � n−1�(z) z = xn−1 (13)

in the asymptotic limit x, n → ∞ with the scaling variable z = xn−1 fixed (see figure 4).
This scaling behaviour enables quantitative characterization of extremal statistics.

Numerically, we find that the scaling function exhibits the following extremal behaviours:

�(z) ∝
{

z z → 0

exp(−zκ) z → ∞ (14)

with κ ≈ 0.4–0.5 (see the inset to figure 4). The small-z behaviour can be understood by
considering the minimal value xn = 2. This occurs when the first element x0 = 1 is chosen
twice and therefore, Pn(2) = n−2. Combining this with equation (13) gives �(2n−1) = n−1

in agreement with the asymptotics �(z) ∝ z in the z → 0 limit. The large-z behaviour is
more subtle as it depends on the entire sequence evolution. Contrary to the small argument
behaviour, analysis of the maximal sequences xn = 2n does not elucidate the large argument
tail. Indeed, such sequences occur with probability 1/n!, much smaller than the exponentially
small probabilities dominating the large-z behaviour.

The ordinary scaling behaviour indicates that mean-field theory may provide better insight
in the case of model II. Ignoring the history by which sequences evolve yields the following
recursion for the distribution:

Pn(x) = n−2
n−1∑
l=0

n−1∑
m=0

x−1∑
y=1

Pl(y)Pm(x − y). (15)
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Figure 4. The scaling distribution �(z) versus z. The distributions were obtained from an average
over 107 realizations. Shown also is the mean field theory (MFT) result (18). The inset shows the
large argument tail.

Using equation (13), and replacing summations by integration, equation (15) reduces to the
integral equation

�(z) =
∫ 1

0

dξ

ξ

∫ 1

0

dη

η

∫ z

0
dz′�

(
z′

ξ

)
�

(
z − z′

η

)
. (16)

The convolution structure suggests using the Laplace transform, and indeed, F(s) =∫
dz e−sz�(z) satisfies a simple equation

F(s) =
[∫ 1

0
dξ F (ξs)

]2

. (17)

The auxiliary function G(s) = ∫ s

0 ds′ F(s′) obeys the ordinary differential equation dG/ds =
(G/s)2 from which G(s) = s/(1 + cs) and then F(s) = (1 + cs)−2. The small-s behaviour
F(s) = 1 − s implies c = 1/2. Inverting the Laplace transform F(s) = (1 + s/2)−2 yields
the scaling function

�(z) = 4z exp(−2z). (18)

In the small-z limit, mean-field theory is correct because memory is irrelevant for x  n (see
figure 3). In contrast, for x � n, memory is important and the exponent κ = 1 is larger than
the numerical value κ ≈ 0.4–0.5. Additionally, one may compare the prefactors characterizing
the moments defined in equation (12). Using µk = ∫

dz zk�(z) gives µk = (k + 1)!2−k and,
in particular, µk = 1, 3/2, 3, for k = 1, 2, 3. The corresponding numerical values are 1,
1.84, 5.76, respectively. Although the history-independent approximation is quantitatively
inaccurate, it still provides useful insights for model II.

We have seen that the sequence growth sensitively depends on the details of the model.
In fact, the stretched exponential or algebraic growth can be tuned by varying the recurrence
rules. For example, introducing a multiplicative factor to model II, xn = c(xp + xq), leads
to the algebraic growth An ∼ n2c−1. Functionally different growth laws naturally emerge as
well. If in model I, xn = xn−1 + xq , the memory range is 0 � q � [bn] with 0 < b < 1, one
finds log-normal growth

An ∝ exp(C ln2 n) (19)
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with C = [2 ln(1/b)]−1. This growth law is slower than stretched exponential but faster than
power law.

In summary, we have introduced a class of stochastic integer sequences where each
sequence element is a sum of two previous elements, at least one of which is randomly chosen.
While the sequence may attain a vast range of possible values, the dynamics chooses a much
narrower range of values. Depending on the governing rules, there is a wide spectrum of
growth from algebraic to log-normal to stretched exponential. In model I, there are infinitely
many relevant scales underlying the moments. In contrast, for model II, there is a single scale
and consequently, a mean-field approximation is qualitatively correct.

Generally, the phase space has an intricate structure. It contains alternating sequences
of consecutive integers marking allowed and forbidden sequence values. The gap structure
consists of increasingly complex patterns. Interesting deterministic integer sequences such as
the size of the phase space, the number of gaps and the size of the first accessible sequence
underlie this phase space.
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